Laguerre polynomials

Laguerre polynomials
French\ \ polynôme de Laguerre
German\ \ Laguerresche Polynome
Dutch\ \ Laguerre polynomen
Italian\ \ polinomi di Lagnerre
Spanish\ \ polinomios de Laguerre
Catalan\ \ polinomis de Laguerre
Portuguese\ \ polinómios de Laguerre; polinômios de Laguerre (bra)
Romanian\ \ -
Danish\ \ -
Norwegian\ \ -
Swedish\ \ -
Greek\ \ πολυώνυμα Laguerre
Finnish\ \ Laguerren polynomit
Hungarian\ \ Laguerre-polinómok
Turkish\ \ Laguerre çokterimlileri; Laguerre polinomları
Estonian\ \ Laguerre'i polünoomid
Lithuanian\ \ Laguerre polinomai; Lagero polinomai
Slovenian\ \ -
Polish\ \ wielomiany Laguerre'a
Russian\ \ полиноминалы Лагуэрра
Ukrainian\ \ -
Serbian\ \ -
Icelandic\ \ Laguerre margliður
Euskara\ \ Laguerre polinomioen
Farsi\ \ -
Persian-Farsi\ \ -
Arabic\ \ كثيرات الحدود للاكوير
Afrikaans\ \ Laguerre-polinome
Chinese\ \ 拉 格 瑞 多 项 式
Korean\ \ 라게르 다항식

Statistical terms. 2014.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Laguerre polynomials — In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834 ndash; 1886), are the canonical solutions of Laguerre s equation::x,y + (1 x),y + n,y = 0,which is a second order linear differential equation.This equation has… …   Wikipedia

  • Continuous q-Laguerre polynomials — In mathematics, the continuous q Laguerre polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their… …   Wikipedia

  • Laguerre's method — In numerical analysis, Laguerre s method is a root finding algorithm tailored to polynomials. In other words, Laguerre s method can be used to solve numerically the equation : p(x) = 0 for a given polynomial p . One of the most useful properties… …   Wikipedia

  • Classical orthogonal polynomials — In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials, and consist of the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials together with their special cases the ultraspherical… …   Wikipedia

  • Hermite polynomials — In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence that arise in probability, such as the Edgeworth series; in combinatorics, as an example of an Appell sequence, obeying the umbral calculus; in numerical… …   Wikipedia

  • Orthogonal polynomials — In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the… …   Wikipedia

  • Polynôme de Laguerre — En mathématiques, les polynômes de Laguerre, nommés d après Edmond Laguerre (1834 1886), sont les solutions de l équation de Laguerre : qui est une équation différentielle linéaire du second ordre. Cette équation a des solutions non… …   Wikipédia en Français

  • Denisyuk polynomials — In mathematics, Denisyuk polynomials Den(x) or Mn(x) are generalizations of the Laguerre polynomials introduced by Denisyuk (1954) given by the generating function (Boas Buck 1958, p.41). See also References Boas, Ralph P.; Buck, R. Creighton… …   Wikipedia

  • Edmond Laguerre — Edmond Nicolas Laguerre (April 9 1834, Bar le Duc – August 14 1886, Bar le Duc) was a French mathematician, a member of the Académie française (1885). His main works were in the areas of geometry and complex analysis. He also investigated… …   Wikipedia

  • Charlier polynomials — In mathematics, Charlier polynomials (also called Poisson–Charlier polynomials) are a family of orthogonal polynomials introduced by Carl Charlier. They are given in terms of the generalized hypergeometric function by where L are Laguerre… …   Wikipedia

  • Meixner polynomials — Not to be confused with Meixner–Pollaczek polynomials. In mathematics, Meixner polynomials (also called discrete Laguerre polynomials) are a family of discrete orthogonal polynomials introduced by Josef Meixner (1934). They are given in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”